Interfacial electron transfer dynamics in dye-modified graphene oxide nanosheets studied by single-molecule fluorescence spectroscopy.
نویسندگان
چکیده
Graphene oxide (GO) nanosheets have received a great deal of attention for a wide range of applications from optoelectronic devices to biological sensors. We now report a mechanistic study of the interfacial electron transfer (ET) processes between organic dye molecule, 9-phenyl-2,3,7-trihydroxy-6-fluorone (PF), and nanometre-sized GO sheets using ensemble-averaged and single-molecule spectroscopies. The ET dynamics was characterized by the direct observation of the PF radical cation during the laser flash photolysis, and its reaction rate was determined to be ~10(11) s(-1). The single-molecule fluorescence spectroscopy was utilized to clarify the heterogeneous nature of the interfacial ET within individual composites. Their fluorescence lifetimes and spectra were found to vary from composite to composite, possibly due to the different local structures and molecular interactions. The autocorrelation analysis of fluorescence intensity trajectories also revealed the temporal fluctuation of the ET reactivity.
منابع مشابه
Performance comparison of graphene and graphene oxide-supported palladium nanoparticles as a highly efficient catalyst in oxygen reduction
In this work, the performance of graphene nanosheets (GNs) and graphene oxide (GO) nanosheets, as a support for palladium nanoparticles (PdNPs) toward oxygen reduction reaction (ORR), was studied. The graphene nanosheets were functionalized by a new and simple method. The PdNPs were synthesized on a glassy carbon electrode (GCE) modified with GNs or GO via a potentiostatic method; without using...
متن کاملPhotophysical Behaviors of Single Fluorophores Localized on Zinc Oxide Nanostructures
Single-molecule fluorescence spectroscopy has now been widely used to investigate complex dynamic processes which would normally be obscured in an ensemble-averaged measurement. In this report we studied photophysical behaviors of single fluorophores in proximity to zinc oxide nanostructures by single-molecule fluorescence spectroscopy and time-correlated single-photon counting (TCSPC). Single ...
متن کاملProbing single-molecule interfacial electron transfer dynamics of porphyrin on TiO2 nanoparticles.
Single-molecule interfacial electron transfer (ET) dynamics has been studied by using single-molecule fluorescence spectroscopy and microscopic imaging. For a single-molecule zinc-tetra (4-carboxyphenyl) porphyrin (ZnTCPP)/TiO(2) nanoparticle system, the single-molecule fluorescence trajectories show strong fluctuation and blinking between bright and dark states. The intermittency and fluctuati...
متن کاملMn (III) salen complex supported on graphene oxide nanosheets as a highly selective and recoverable catalyst for the oxidation of sulfides
In this study, Mn (III) salen complex was synthesized and immobilized onto the graphene oxide, which is modified by 3-chloropropyltrimethoxy silane. Heterogeneous catalyst was characterized by X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, fourier transform infrared spectra, nitrogen adsorption−desorption isotherm and atomic absorption spectroscopy. The catalyt...
متن کاملThionine-graphene oxide covalent hybrid and its interaction with light.
Graphene oxide sheets (GO) were covalently functionalized with thionine molecules. The obtained hybrid material, Th-GO, was characterized by means of scanning electron microscopy (SEM), Auger electron spectroscopy (AES), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. Subsequently, the interaction of light with the free dye molecules and with dye molecules bound to the gr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 14 12 شماره
صفحات -
تاریخ انتشار 2012